ECG-Gated Interventional Cardiac Reconstruction for Non-periodic Motion
نویسندگان
چکیده
The 3-D reconstruction of cardiac vasculature using C-arm CT is an active and challenging field of research. In interventional environments patients often do have arrhythmic heart signals or cannot hold breath during the complete data acquisition. This important group of patients cannot be reconstructed with current approaches that do strongly depend on a high degree of cardiac motion periodicity for working properly. In a last year's MICCAI contribution a first algorithm was presented that is able to estimate non-periodic 4-D motion patterns. However, to some degree that algorithm still depends on periodicity, as it requires a prior image which is obtained using a simple ECG-gated reconstruction. In this work we aim to provide a solution to this problem by developing a motion compensated ECG-gating algorithm. It is built upon a 4-D time-continuous affine motion model which is capable of compactly describing highly non-periodic motion patterns. A stochastic optimization scheme is derived which minimizes the error between the measured projection data and the forward projection of the motion compensated reconstruction. For evaluation, the algorithm is applied to 5 datasets of the left coronary arteries of patients that have ignored the breath hold command and/or had arrhythmic heart signals during the data acquisition. By applying the developed algorithm the average visibility of the vessel segments could be increased by 27%. The results show that the proposed algorithm provides excellent reconstruction quality in cases where classical approaches fail. The algorithm is highly parallelizable and a clinically feasible runtime of under 4 minutes is achieved using modern graphics card hardware.
منابع مشابه
Residual motion compensation in ECG-gated interventional cardiac vasculature reconstruction.
Three-dimensional reconstruction of cardiac vasculature from angiographic C-arm CT (rotational angiography) data is a major challenge. Motion artefacts corrupt image quality, reducing usability for diagnosis and guidance. Many state-of-the-art approaches depend on retrospective ECG-gating of projection data for image reconstruction. A trade-off has to be made regarding the size of the ECG-gatin...
متن کاملInterventional 4-D Motion Estimation and Reconstruction of Cardiac Vasculature without Motion Periodicity Assumption
Anatomical and functional information of cardiac vasculature is a key component in the field of interventional cardiology. With the technology of C-arm CT it is possible to reconstruct static intraprocedural 3D images from angiographic projection data. Current approaches attempt to add the temporal dimension (4D). In the assumption of periodic heart motion, ECG-gating techniques can be used. Ho...
متن کاملCardiac C-Arm Computed Tomography:Motion Estimation and Dynamic Reconstruction
Generating three dimensional images of the heart during interventional procedures is a significant challenge. In addition to real-time fluoroscopy, angiographic C-arm systems can also be used to generate 3-D/4-D CT images on the same system. One protocol for cardiac Computed Tomography (CT) uses electrocardiogram (ECG) triggered multi-sweep scans. A 3-D volume of the heart at a particular cardi...
متن کاملCardiac and respiratory motion compensated reconstruction driven only by 1D navigators
INTRODUCTION Cardiac MRI requires compensation of respiratory and cardiac motion, which is usually performed by gating using an ECG and breathing signal. Recently, a motion compensated reconstruction of arbitrary physiological motion was proposed [1], that is based on a generalized reconstruction by inversion of coupled systems (GRICS) and uses a motion model and a reduced number of 1D input si...
متن کاملAdvanced Motion Correction Methods in PET
With the arrival of increasingly higher resolution PET systems, small amounts of motion can cause significant blurring in the images, compared to the intrinsic resolutions of the scanners. In this work, we have reviewed advanced correction methods for the three cases of (i) unwanted patient motion, as well as motions due to (ii) cardiac and (iii) respiratory cycles. For the first type of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 13 Pt 1 شماره
صفحات -
تاریخ انتشار 2010